LEBANESE AMERICAN UNIVERSITY School of Engineering Department of Electrical and Computer Engineering

ELE443 Control System LAB
Fall 2013

Lecture 1: Introduction to MATLAB

Joe Khalifeh

Introduction

- MATLAB=Matrix Laboratory
- MATLAB is a high-performance language for technical computing.
- It integrates computation, visualization, and programming in an easy-to-use environment.
- Typical uses are:
- Math and computation
- Algorithm development
- Data acquisition
- Modeling
b simulation, and prototyping
- Data analysis, exploration, and visualization
- Scientific and engineering graphics
- Application development, including graphical user interface building

MATLAB System

- MATLAB System is formed of 5 main parts:
- Desktop Tools and Development Environment
- The MATLAB Mathematical Function Library
- The MATLAB Language
- Graphics
- The MATLAB External Interfaces/API

MATLAB Toolboxes

- There are many toolboxes in MATLAB:
, Control Systems Toolbox
- Communication Toolbox
- Curve Fitting Toolbox
- Filter Design Toolbox
- Statistics Toolbox
- In addition to Simulink which simulates systems using block diagrams

MATLAB Windows

- Command Window
- Current Directory
- Workspace
- Command History

Basic Notations

- Semicolon(;): If a semicolon is typed after a command, then the command is executed without displaying the output.
- Comments(\%): Similarly to high level programming languages, comments in MATLAB codes are written after typing percent sign \%
- clear: It clears all variables in workspace
- clear A B: Clears variables A and B from workspace
- clc: Clears the command window and homes the cursor. It doesn't affect workspace variables
- close: Closes the current figure window
- help plot: Gives information about the use and the arguments of a function. In this case, it gives information about the function "plot"
- exit: Exit MATLAB

Arithmetic Operators

Symbol	Operation
+	Addition
-	Subtraction
$*$	Multiplication
$/$	Division
\backslash	Left division
\wedge	Power
$(J$	Complex conjugate transpose
	Specify evaluation order

Arithmetic Operations

- MATLAB as a calculator:
- Simplest way to use MATLAB
- Type command (mathematical expression)
- Press Enter Key
- Command executed and then is displayed
- ans= (result)
- Example
- $\cos (\mathrm{pi} / 2)$
ans $=0$

Display Format

- The number format in command window can be modified using the command format
- The default format in the command window is the short representation of numbers.

Command	Description	Example
format short	Scaled fixed point format, with 5 digits	3.1416
format long	Scaled fixed point format, with 15 digitit for double; 7 digits for single.	3.14159265358979

Display Format

Command	Description	Example
format short eng	Engineering format that has at least 5 digits and a power that is a multiple of three	$3.1416 \mathrm{e}+000$
format long eng	Engineering format that has exaclly 16 signifiant digits and a power that is a multiple of three	3.1415926535897 $9 \mathrm{e}+000$
format short e	Floating point format, with 5 digits.	$3.1416 \mathrm{e}+000$
format long e	Floating point format, with 15 digits for double 7 digits for single.	3.1415926535897 $93 \mathrm{e}+000$

Elementary functions

- MATLAB has built-in useful elementary functions, and extended lists of elementary functions is provided by MATLAB toolboxes.
- Some useful elementary functions:
* sqrt, exp, log, $\log 10, \log 2$, cos, ceil, sign

MATLAB Variables

- The MATLAB language works with only a single object type: the MATLAB array.
- All MATLAB variables, including scalars, vectors, matrices, strings, cell arrays, structures, and objects are stored as MATLAB arrays.
- Variables are shown in Workspace.
- Variables can have different data types such as:
- Complex Double-Precision Matrices
, Numeric Matrices
- Logical Matrices
- MATLAB Strings
- Empty Arrays

MATLAB Variables

- Variable
- Name made of a combination of letters and/or digits:
- Memory location
- Scalar variables are assigned a numerical value:
- Stored in memory location
- Can be used in any MATLAB statement or command
* Variables are assigned using equal operator (=). It assigns a value to a variable
- Example:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{pi} / 2 \\
& \mathrm{x}=1.5708
\end{aligned}
$$

$$
\mathrm{f}=\sin (\mathrm{x})
$$

$$
\mathrm{f}=1
$$

MATLAB Variables

- Rules about variable names:
- Up to 63 characters in MATLAB 7 (31 in MATLAB 6.x).
- Can contain letters, digits and underscore.
- Must begin with a letter.
- MATLAB is case sensitive.
- Avoid using names of built-in functions or predefined variables.
- Predefined variables
- $\mathrm{pi}=$ the number π
- Inf =Infinity
- realmax=Largest positive floating point number
- realmin=Smallest positive floating point number
- $\mathrm{i}=\operatorname{sqrt}(-1)$
- $\mathrm{j}=\mathrm{I}$
- $\mathrm{NaN}=$ (Not a Number) used by MATLAB when it cannot define a valid numerical value, such as 0/0.
- Eps $=$ Spacing of floating point numbers $=2^{-52}$

MATLAB Variables

- Useful commands for managing variables

Command	Description
clear	Clear variables and functions from memory.
clear x y	Clear the variables specified.
who	List current variables.
whos	List current variables, long form.
load	Load workspace variables from disk.
save	Save workspace variables to disk.

Creating Arrays in MATLAB

- Array:

- Fundamental form used to store and manipulate data.
- Arranged in rows and/or columns.
- Include data of different types.
- Arrays are n-dimensional:
- One-Dimensional (Vector)
- Two-Dimensional (Matrix)
, N-Dimensional

Arrays

- Array constructor []
- An array of elements (Vector or Matrix) is created using brackets []
- Example:
- $\mathrm{V}=$ [1 23 5] creates a horizontal vector
- Similarly, $\mathrm{V}=[1,2,3,5]$
- A Comma or a Blank separate between elements in two columns of a matrix or vector

Creating Vectors

- When vector elements are specified element by element, a vector can be defined as follows:
- Row vector:
- $V=\left[\begin{array}{lll}1 & 2 & 5\end{array}\right]$
$\mathrm{V}=1 \begin{array}{llll}1 & 2 & 3 & 5\end{array}$
- Column Vector:
, Elements in a column vector are separated using semicolon(;)
- $\mathrm{U}=[5 ; 2 ; 1]$
$\mathrm{U}=5$
2
1

Creating Vectors

- Vectors with constant spacing:
- V=start: space :end
p start= first element, end=last element
- space= spacing between two consecutive elements
$\begin{array}{lrlll}V=1: 3: 13 \\ V=1 & 4 & 7 & 10 & 13\end{array}$
- When space is omitted, default spacing is 1 .

Creating Vectors

- Vector with constant spacing of a desired number of elements:
- V=linspace(start,end,\# of elements)
- V=linspace $(1,5,3)$ $\mathrm{V}=1 \quad 3 \quad 5$
- When \# of elements is omitted, 100 is used as a default number.

Creating Matrices

- Matrices are two-dimensional arrays.
- An m-by-n matrix has m rows and n columns
- All rows must have the same number of elements.
- In square matrices, $\mathrm{m}=\mathrm{n}$.
- Example:

A=[15 7;8 2 6;4-2 9]
$\begin{array}{lll}\mathrm{A}=1 & 5 & 7\end{array}$
$8 \quad 2 \quad 6$
4 -2 9

Creating Matrices

- Variables or functions with adequate output size can be used to define matrix elements.
($\mathrm{x}=0$;
$\mathrm{y}=\mathrm{pi} / 6$;
$\mathrm{z}=\mathrm{pi} / 2$;
- $A=[x, y, z]$
$A=0 \quad 0.5236 \quad 1.5708$
- $\mathrm{B}=[\mathrm{A} ; \sin (\mathrm{A})]$
$B=0$
$0 \quad 0.5$
1.5708
1

Useful matrices

veros(M,N)

- Creates an M-by-N matrix of zeros.
, ones(M,N)
- Creates an M-by-N matrix of ones.
- eye(N)
- Creates the N -by- N identity matrix.

3-Dimensional Arrays

- A 3D array may be constructed by superposition of 2D arrays.
- Example:
- $A=[12$ 5;7 8 6];
- $\mathrm{B}=\left[\begin{array}{ll}8 & 2 \\ 6 ; 7 & 3\end{array}\right]$;
- $C(:,,: 1)=A$
$\begin{array}{rrr}C=1 & 2 & 5 \\ 7 & 8 & 6\end{array}$
- $C(:,:, 2)=B$
$C(:,:, 1)=1 \begin{array}{rrr}2 & 5 \\ 7 & 8 & 6\end{array}$
$C(:,:, 2)=8 \quad 2 \quad 6$

The Transpose Operation

- In vectors: Switches row (column) to column (row)
- In matrices: Switches columns (rows) to rows (columns)
- Applied by typing ' next to a variable.
- Transpose is not defined for N -Dimensional arrays where $\mathrm{N}>2$
- Example:

$$
\begin{aligned}
& \text { A = [1 } 2 \text { 5; } 78 \text { 6] } \\
& \begin{array}{ccc}
A=1 & 2 & 5 \\
7 & 8 & 6
\end{array} \\
& \text { >> A' } \\
& \text { ans = } 1 \quad 7 \\
& 28 \\
& 56
\end{aligned}
$$

Array Addressing

- Elements in arrays can be addressed individually or in subgroups.
- In vectors, elements are addressed by their index.
- Vector indices start from 1.
- For example:
- $\mathrm{V}=\left[\begin{array}{lll}5 & 4 & 3\end{array}\right.$ 7];
V(1)
ans $=5$

$$
\begin{aligned}
& a=V(5) \\
& a=7
\end{aligned}
$$

Array Addressing

- Elements of N -Dimensional arrays are addressed using N coordinates (arguments).
- Matrices are 2D arrays.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
5 & 6 & 3 ; 8 & 2
\end{array}\right] \\
& A=5 \\
& \hline
\end{aligned} 6
$$

- The element "-9" is in the $2^{\text {nd }}$ row and $3^{\text {rd }}$ column can be addressed by:
- $A(2,3)$
ans $=-9$

Array Addressing

- To address sub-matrices in a matrix, we use the colon (:) notation. Consider the following matrix:

$$
\begin{aligned}
& \text { - } A=[56 \text { 9;3 } 2 \text { 7;1 } 4 \text { 8] } \\
& A=\begin{array}{lll}
5 & 6 & 9 \\
\hline 3 & 2 & 7 \\
1 & 4 & 7
\end{array}
\end{aligned}
$$

- The elements of the sub-matrix are in rows (2 to 3), and in columns (1 to 2), this sub-matrix is addressed such that:
- $A(2: 3,1: 2)$
ans $=\begin{array}{rr}3 & 2 \\ 1 & 4\end{array}$

Array Addressing

- >> A=[5 6 9;3 2 7;1 4 8]

- $\mathrm{A}\left(\left[\begin{array}{ll}13],\left[\begin{array}{ll}1 & 2\end{array}\right) \\ \hline\end{array}\right.\right.$ ans $=56$

14
elements from ($1^{\text {st }}$ and $3^{\text {rd }}$ row) and ($1^{\text {st }}$ and $2^{\text {nd }}$ column)

Array Addressing

- To address all elements from a column(s) or a row(s):

$$
A=\begin{array}{r|r|r}
5 & 6 & 9 \\
3 & 2 & 7 \\
1 & 4 & 8
\end{array}
$$

- Using (:) in the $\mathrm{i}^{\text {th }}$ dimension selects all elements belonging to this dimension.
$A(:, 2)$ ans $=6$

2
4

Modifying array elements

- Modifying array elements can be done by assigning new elements to sub-parts of the array.

- $A(2: 3,1: 2)=\left[\begin{array}{ll}5 ; 63\end{array}\right]$
$A=5 \quad 69$
$\begin{array}{lll}5 & 8 & 7\end{array}$
$6 \quad 3 \quad 8$

Adding elements to arrays

- Adding new elements to a matrix:
- Assigning matrices to new positions in a matrix (at positions "outside" matrix dimension)
- Appending two matrices
- The added and original matrices should have the same number of rows (columns) if we are appending elements horizontally (vertically).

Adding elements to arrays

- Example: A =5 69

3	2	7
1	4	8

- Adding a column to A as a $5^{\text {th }}$ column:

$$
\begin{aligned}
& A(:, 5)=[3 ; 7 ; 2] \\
& A=\begin{array}{rllll}
5 & 6 & 9 & 0 & 3 \\
3 & 2 & 7 & 0 & 7 \\
1 & 4 & 8 & 0 & 2
\end{array}
\end{aligned}
$$

- Note that the $4^{\text {th }}$ column is automatically created and set to 0 , and in this horizontal appending, the number of rows of the original and added matrices are equal.

Adding elements to arrays

- Adding a single element to an array is always allowed (without constraints on the size of the matrix).

$A=$| 5 | 6 | 9 |
| ---: | ---: | ---: |
| 3 | 2 | 7 |
| 1 | 4 | 8 |

- $\mathrm{A}(5,4)=2$

$A=$| 5 | 6 | 9 | 0 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 7 | 0 |
| 1 | 4 | 8 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 2 |

- New elements are created accordingly to satisfy the new matrix dimension (and are set to 0).

Adding elements to arrays

- Another method of appending elements of two arrays is by assigning a new array whose elements are arrays and not scalars.
- $A=[1$ 2;5 6]
$\mathrm{A}=1 \quad 2$
56
म $\mathrm{B}=[7 ; 8]$
$B=7$
8
($\mathrm{C}=[\mathrm{AB}]$
$C=\begin{array}{rrr}1 & 2 & 7 \\ 5 & 6 & 8\end{array}$

Deleting elements from arrays

- Deleting columns or rows from a matrix can be done by assigning the null matrix [] to a sub-part of the matrix.
- $A=5 \quad 6 \quad 9$
$\begin{array}{lll}3 & 2 & 7\end{array}$
148
- $A(:, 2)=[]$
$\mathrm{A}=5 \quad 9$
37
18

Array Functions

Function	Description	Example
reshape($\mathrm{X}, \mathrm{M}, \mathrm{N})$	Returns the M-by-N matrix whose elements are taken column wise from X .	$\left.\begin{array}{c} \mathrm{X}=\left[\begin{array}{lll} 1 & 2 ; 3 & 4 \end{array}\right] ; \\ \mathrm{Y}=\mathrm{reshape}(\mathrm{X}, 1,4) \\ \mathrm{Y}=1 \\ =1 \end{array} \quad 3 \quad 2 \quad 4\right)$
$\operatorname{diag}(\mathrm{V})$	Returns a matrix and puts the elements of v in the main diagonal	$\left.\begin{array}{c} \mathrm{v}=\left[\begin{array}{lll} 1 & 2 & 3 \end{array}\right] \\ \mathrm{A}=\operatorname{diag}(\mathrm{v}) \end{array}\right]$
reshape $(\mathrm{X}, \mathrm{M}, \mathrm{N})$	Returns the M-by-N matrix whose elements are taken column wise from X .	$\begin{gathered} \mathrm{X}=\left[\begin{array}{lll} 1 & 2 ; & 4 \end{array}\right] ; \\ \mathrm{Y}=\text { reshape }(\mathrm{X}, 1,4) \\ \mathrm{Y}=1 \\ \hline \end{gathered} \quad 3 \quad 2 \quad 4 .$
$[\mathrm{M}, \mathrm{N}]=\operatorname{size}(\mathrm{X})$	for matrix X , returns the number of rows and columns in X as separate output variables.	$\left.\begin{array}{c} \mathrm{X}=\left[\begin{array}{llll} 1 & 2 & 3 ; & 3 \end{array} \mathrm{l}\right. \\ {[\mathrm{M}} \end{array}\right] \text {] } \mathrm{N}=\mathrm{size}(\mathrm{X})$

Simple plot with MATLAB

- Use "plot" command:
- plot(t, x)
- Plots the vector "x" against the vector " t "
- Example:

Plot the function $\mathrm{x}=2 \exp (-2 \mathrm{t})$ over the range $[0 ; 2]$

- $\mathrm{t}=0: 0.1: 2$;
($\mathrm{x}=2^{*} \exp \left(-2^{*} \mathrm{t}\right)$;
- $\operatorname{plot}(\mathrm{t}, \mathrm{x})$
- grid

Simple plot with MATLAB

