
Lecture 1: Introduction to MATLAB

LEBANESE AMERICAN UNIVERSITY
School of Engineering

Department of Electrical and Computer Engineering

ELE443 Control System LAB

Fall 2013

Joe Khalifeh

Introduction

2

 MATLAB=Matrix Laboratory
 MATLAB is a high-performance language for technical

computing.
 It integrates computation, visualization, and programming

in an easy-to-use environment.

 Typical uses are:
 Math and computation
 Algorithm development
 Data acquisition
 Modeling
 simulation, and prototyping
 Data analysis, exploration, and visualization
 Scientific and engineering graphics
 Application development, including graphical user interface building

MATLAB System

3

 MATLAB System is formed of 5 main parts:

 Desktop Tools and Development Environment

 The MATLAB Mathematical Function Library

 The MATLAB Language

 Graphics

 The MATLAB External Interfaces/API

MATLAB Toolboxes

4

 There are many toolboxes in MATLAB:
 Control Systems Toolbox

 Communication Toolbox

 Curve Fitting Toolbox

 Filter Design Toolbox

 Statistics Toolbox

 …

 In addition to Simulink which simulates systems
using block diagrams

MATLAB Windows

5

 Command Window

 Current Directory

 Workspace

 Command History

Basic Notations

6

 Semicolon(;): If a semicolon is typed after a command, then the
command is executed without displaying the output.

 Comments(%): Similarly to high level programming languages,
comments in MATLAB codes are written after typing percent
sign %

 clear: It clears all variables in workspace

 clear A B: Clears variables A and B from workspace

 clc: Clears the command window and homes the cursor. It
doesn’t affect workspace variables

 close: Closes the current figure window

 help plot: Gives information about the use and the arguments of
a function. In this case, it gives information about the function
“plot”

 exit: Exit MATLAB

Arithmetic Operators

7

Symbol Operation

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division

^ Power

' Complex conjugate transpose

() Specify evaluation order

Arithmetic Operations

8

 MATLAB as a calculator:
 Simplest way to use MATLAB

 Type command (mathematical expression)

 Press Enter Key

 Command executed and then is displayed
o ans= (result)

 Example
 cos(pi/2)

 ans = 0

Display Format

9

 The number format in command window can be
modified using the command format

 The default format in the command window is the
short representation of numbers.

Command Description Example

format short
Scaled fixed point format,

with 5 digits 3.1416

format long
Scaled fixed point format,

with 15 digits for double; 7
digits for single.

3.14159265358979

Display Format

10

Command Description Example

format short eng

Engineering format that
has at least 5 digits and a

power that is a multiple of
three

3.1416e+000

format long eng

Engineering format that
has exactly 16 significant

digits and a power that is a
multiple of three

3.1415926535897
9e+000

format short e
Floating point format, with

5 digits. 3.1416e+000

format long e
Floating point format, with

15 digits for double; 7
digits for single.

3.1415926535897
93e+000

Elementary functions

11

 MATLAB has built-in useful elementary functions, and
extended lists of elementary functions is provided by
MATLAB toolboxes.

 Some useful elementary functions:

 sqrt, exp, log, log10, log2, cos, ceil, sign

MATLAB Variables

12

 The MATLAB language works with only a single object
type: the MATLAB array.

 All MATLAB variables, including scalars, vectors,
matrices, strings, cell arrays, structures, and objects
are stored as MATLAB arrays.

 Variables are shown in Workspace.

 Variables can have different data types such as:
 Complex Double-Precision Matrices

 Numeric Matrices

 Logical Matrices

 MATLAB Strings

 Empty Arrays

MATLAB Variables

13

 Variable
 Name made of a combination of letters and/or digits:

 Memory location

 Scalar variables are assigned a numerical value:
 Stored in memory location

 Can be used in any MATLAB statement or command

 Variables are assigned using equal operator (=). It
assigns a value to a variable

 Example:

 x=pi/2 f=sin(x)

 x =1.5708 f=1

MATLAB Variables

14

 Rules about variable names:
 Up to 63 characters in MATLAB 7 (31 in MATLAB 6.x).

 Can contain letters, digits and underscore.

 Must begin with a letter.

 MATLAB is case sensitive.

 Avoid using names of built-in functions or predefined variables.

 Predefined variables
 pi = the number π
 Inf =Infinity
 realmax=Largest positive floating point number
 realmin=Smallest positive floating point number
 i = sqrt(-1)
 j = I
 NaN= (Not a Number) used by MATLAB when it cannot define a valid numerical

value, such as 0/0.
 Eps = Spacing of floating point numbers = 2-52

MATLAB Variables

 Useful commands for managing variables

Command Description

clear
Clear variables and functions from

memory.

clear x y Clear the variables specified.

who List current variables.

whos List current variables, long form.

load Load workspace variables from disk.

save Save workspace variables to disk.

15

Creating Arrays in MATLAB

16

 Array:
 Fundamental form used to store and manipulate data.

 Arranged in rows and/or columns.

 Include data of different types.

 Arrays are n-dimensional:
 One-Dimensional (Vector)

 Two-Dimensional (Matrix)

 N-Dimensional

Arrays

17

 Array constructor []
 An array of elements (Vector or Matrix) is created using

brackets []

 Example:
 V=[1 2 3 5] creates a horizontal vector

 Similarly, V=[1,2,3,5]

 A Comma or a Blank separate between elements in
two columns of a matrix or vector

Creating Vectors

18

 When vector elements are specified element by element,
a vector can be defined as follows:

 Row vector:

 V=[1 2 3 5]

 V = 1 2 3 5

 Column Vector:

 Elements in a column vector are separated using semicolon(;)

 U=[5;2;1]

 U = 5

 2

 1

Creating Vectors

19

 Vectors with constant spacing:
 V=start: space :end

 start= first element, end=last element

 space= spacing between two consecutive elements

 V=1:3:13
V = 1 4 7 10 13

 When space is omitted, default spacing is 1.

Creating Vectors

20

 Vector with constant spacing of a desired number
of elements:

 V=linspace(start,end,# of elements)
 V=linspace(1,5,3)

 V =1 3 5

 When # of elements is omitted, 100 is used as a
default number.

Creating Matrices

21

 Matrices are two-dimensional arrays.

 An m-by-n matrix has m rows and n columns

 All rows must have the same number of elements.

 In square matrices, m=n.

 Example:

 A=[1 5 7;8 2 6;4 -2 9]

 A = 1 5 7

 8 2 6

 4 -2 9

Creating Matrices

22

 Variables or functions with adequate output size can be
used to define matrix elements.

 x=0;
 y=pi/6;
 z=pi/2;

 A=[x,y,z]

 A = 0 0.5236 1.5708

 B=[A;sin(A)]

 B = 0 0.5236 1.5708
 0 0.5 1

Useful matrices

23

 zeros(M,N)

 Creates an M-by-N matrix of zeros.

 ones(M,N)

 Creates an M-by-N matrix of ones.

 eye(N)

 Creates the N-by-N identity matrix.

3-Dimensional Arrays

24

 A 3D array may be constructed by superposition of 2D

arrays.

 Example:
 A=[1 2 5;7 8 6];
 B=[8 2 6;7 3 1];

 C(:,:,1)=A
 C = 1 2 5
 7 8 6

 C(:,:,2)=B

 C(:,:,1) =1 2 5 C(:,:,2) = 8 2 6
 7 8 6 7 3 1

The Transpose Operation

25

 In vectors: Switches row (column) to column (row)

 In matrices: Switches columns (rows) to rows (columns)

 Applied by typing ‘ next to a variable.

 Transpose is not defined for N-Dimensional arrays where
N>2

 Example:
 A = [1 2 5; 7 8 6]

 A = 1 2 5

 7 8 6

 >> A'

 ans = 1 7

 2 8

 5 6

Array Addressing

26

 Elements in arrays can be addressed individually

or in subgroups.
 In vectors, elements are addressed by their index.
 Vector indices start from 1.

 For example:

 V=[5 4 8 3 7];

 V(1) a=V(5)
 ans =5 a = 7

Array Addressing

27

 Elements of N-Dimensional arrays are addressed using N

coordinates (arguments).
 Matrices are 2D arrays.

 A=[5 6 3;8 2 -9]

A = 5 6 3
 8 2 -9

 The element “-9” is in the 2nd row and 3rd column can be
addressed by:

 A(2,3)
 ans =-9

Array Addressing

28

 To address sub-matrices in a matrix, we use the colon (:)
notation. Consider the following matrix:

 A=[5 6 9;3 2 7;1 4 8]
 A = 5 6 9
 3 2 7
 1 4 8

 The elements of the sub-matrix are in rows (2 to 3), and in

columns (1 to 2), this sub-matrix is addressed such that:

 A(2:3,1:2)

ans = 3 2
 1 4

Array Addressing

29

 >> A=[5 6 9;3 2 7;1 4 8]

 A = 5 6 9
 3 2 7
 1 4 8

 A([1 3],[1 2])

 ans = 5 6
 1 4

elements from (1st and
3rd row) and (1st and
2nd column)

Array Addressing

30

 To address all elements from a column(s) or a row(s):

 A = 5 6 9

 3 2 7

 1 4 8

 Using (:) in the ith dimension selects all elements
belonging to this dimension.

 A(:,2)

 ans = 6

 2

 4

Modifying array elements

31

 Modifying array elements can be done by assigning
new elements to sub-parts of the array.

 A = 5 6 9

 3 2 7 5 8

 1 4 8 6 3

 A(2:3,1:2)=[5 8;6 3]

 A = 5 6 9

 5 8 7

 6 3 8

Adding elements to arrays

32

 Adding new elements to a matrix:

 Assigning matrices to new positions in a matrix (at
positions “outside” matrix dimension)

 Appending two matrices

 The added and original matrices should have the same
number of rows (columns) if we are appending elements
horizontally (vertically).

Adding elements to arrays

33

 Example: A = 5 6 9

 3 2 7

 1 4 8

 Adding a column to A as a 5th column:

 A(:,5)=[3;7;2]

 A = 5 6 9 0 3

 3 2 7 0 7

 1 4 8 0 2

 Note that the 4th column is automatically created and set to 0, and in
this horizontal appending, the number of rows of the original and
added matrices are equal.

Adding elements to arrays

34

 Adding a single element to an array is always allowed (without
constraints on the size of the matrix).

 A = 5 6 9

 3 2 7

 1 4 8

 A(5,4)=2

 A = 5 6 9 0

 3 2 7 0

 1 4 8 0

 0 0 0 0

 0 0 0 2

 New elements are created accordingly to satisfy the new matrix
dimension (and are set to 0).

Adding elements to arrays

35

 Another method of appending elements of two arrays is by assigning a
new array whose elements are arrays and not scalars.

 A=[1 2;5 6]
 A = 1 2

 5 6

 B=[7;8]

 B = 7

 8

 C=[A B]

 C = 1 2 7

 5 6 8

Deleting elements from arrays

36

 Deleting columns or rows from a matrix can be done by

assigning the null matrix [] to a sub-part of the matrix.

 A = 5 6 9

 3 2 7
 1 4 8

 A(:,2)=[]

 A = 5 9
 3 7
 1 8

Array Functions

37

Function Description Example

reshape(X,M,N)
Returns the M-by-N matrix
whose elements are taken

column wise from X.

X=[1 2;3 4];

Y=reshape(X,1,4)

Y = 1 3 2 4

diag(v)
Returns a matrix and puts the

elements of v in the main
diagonal

v=[1 2 3];

A=diag(v)

A = 1 0 0

 0 2 0

 0 0 3

reshape(X,M,N)
Returns the M-by-N matrix
whose elements are taken

column wise from X.

X=[1 2;3 4];
Y=reshape(X,1,4)

Y = 1 3 2 4

[M,N]=size(X)
for matrix X, returns the

number of rows and columns
in X as separate output

variables.

X=[1 2 3;7 5 9];

[M N]=size(X)

M=2 & N=3

Simple plot with MATLAB

38

 Use “plot” command:

 plot(t, x)

 Plots the vector “x” against the vector “t”

 Example:
Plot the function x=2exp(-2t) over the range [0;2]

 t=0:0.1:2;

 x=2*exp(-2*t);

 plot(t,x)

 grid

Simple plot with MATLAB

39

